Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Comput Biol Chem ; 110: 108049, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38507844

RESUMO

Endocannabinoid system plays a pivotal role in controlling neuroinflammation, and modulating this system may not only aid in managing symptoms of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Epilepsy, Central and Peripheral neuropathic pain, but also, have the potential to target these diseases at an early-stage. In the present study, six different pharmacophore hypotheses were generated from Cannabidiol (CBD)-Cannabinoid Receptor subtype-2 (CB2) and then Zinc database was screened for identification of hit molecules. Identified 215 hit molecules were subjected to preliminary screening with ADMET and drug likeness properties, and about 48 molecules were found with no violations and toxicity properties. In molecular docking studies, six compounds showed better binding energy than CBD and ß-caryophyllene (known inhibitor of CB2). These six molecules were designated as leads and subjected to re-docking with glide tool and Lead1 (ZINC000078815430) showed docking score of -9.877 kcal/mol, whereas CBD and ß-caryophyllene showed score of -9.664 and -8.499 kcal/mol, respectively. Lead1 and CBD were evaluated for stability studies with Desmond tool by molecular dynamic simulation studies. Lead1 showed better stability than CBD in all studied parameters such as RMSD, RMSF, SSE, Rg, SASA, etc. In MM-GBSA free energy calculations, ΔGbinding energy of CB2-CBD complex and CB2-Lead1 were found to be -103.13±11.19 and -107.94±5.42 kcal/mol, respectively. Six lead molecules stated in the study hold promise with respect to CBD agonistic activity for treating and/or managing chronic conditions and can be explored as an alternative for early-stage cure, which has not yet been experimentally explored.

2.
Chem Biodivers ; : e202302030, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401117

RESUMO

Curcumin is a diverse natural pharmacological agent involved in various signal transduction mechanisms. Therapeutically, this potent molecule faces different challenges and issues related to low bioavailability due to its poor aqueous solubility, less permeability, faster elimination and clearance. Experts in synthetic chemistry and pharmaceuticals are continuously sparing their efforts to overcome these pharmacokinetic challenges by using different structural modification strategies and developing novel drug delivery systems. In this mini-review article, we are focusing on development of curcumin derivatives by different possible routes like conjugation with biomolecules, natural polymers, synthetic polymers, natural products, metal conjugates and co- administration with natural metabolic inhibitors. In addition to that, it was also focused on the preparation of modified formulations such as micelles, microemulsions, liposomes, complexes with phospholipids, micro and nanoemulsions, solid lipid nanoparticles, nano lipid carriers, biopolymer nanoparticles and microgels to improve the pharmacokinetic properties of the curcumin without altering its pharmacodynamics activity. This review helps to understand the problems associated with curcumin and different strategies to improve its pharmacokinetic profile.

3.
Curr Radiopharm ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38213166

RESUMO

Radiopharmaceuticals are in the diagnosis and treatment of cancerous and noncancerous diseases, and a hope for optimistic effort in the field of nuclear medicine. They play a crucial role in clinical nuclear medicine by providing a tool to comprehend human disease and create efficient treatments. A detailed analysis is provided regarding the crux of molecular imaging including PET and SPECT overview for the detection of cancers. For a specified understanding of radiation therapy, topics include ranging from the selection of radionuclide to its development and manufacture, and dosage requirements to establishing the importance of I- 131 Radiotherapy in thyroid cancer. In this review, we also discussed the current state of the art of nuclear medicine in thyroid cancer, including the role of radioiodine (RAI) therapeutic scans in the diagnosis of differentiated thyroid cancer. In addition, we established a brief outlook into the current status of the research in thyroid cancer and discussed the future directions in this field.

4.
Mol Divers ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267751

RESUMO

Alzheimer's disease is a neurodegenerative disorder accounting for 60-80% of dementia cases and is accompanied by a high mortality rate in patients above 70 years of age. The formation of senile plaques composed of amyloid-ß protein is a hallmark of Alzheimer's disease. Beta-site APP cleaving enzyme 1 (BACE1) is a proteolytic enzyme involved in the degradation of amyloid precursor protein, which further degrades to form toxic amyloid-ß fragments. Hence, inhibition of BACE1 was stated to be an effective strategy for Alzheimer's therapeutics. Keeping in mind the structures of different BACE1 inhibitors that had reached the clinical trials, we designed a library of compounds (total 164) based on a substituted 5-amino tetrazole scaffold which was an isosteric replacement of the cyclic amidine moiety, a common component of the BACE1 inhibitors which reached the clinical trials. The scaffold was linked to different structural moieties with the aid of an amide or sulfonamide bond to design some novel molecules. Molecular docking was initially performed and the top 5 molecules were selected based on docking scores and protein-ligand interactions. Furthermore, molecular dynamic simulations were performed for these molecules (3g, 7k, 8n, 9d, 9g) for 100 ns and MM-GBSA calculations were performed for each of these complexes. After critical evaluation of the obtained results, three potential molecules (9d, 8n, and 7k) were forwarded for prolonged stability studies by performing molecular dynamic simulations for 250 ns and simultaneous MM-GBSA calculations. It was observed that the compounds (9d, 8n, and 7k) were forming good interactions with the amino acid residues of the catalytic site of the enzyme with multiple non-covalent interactions. In MD simulations, the compounds have shown better stability and better binding energy throughout the runtime.

5.
J Biomol Struct Dyn ; : 1-13, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37409931

RESUMO

The present work aimed to develop a Field-based 3D-QSAR model with existing JAK-2 inhibitors. The JAK-STAT pathway is known to play a role in the development of autoimmune diseases, including rheumatoid arthritis, ulcerative colitis, and Crohn's disease. Dysregulation of JAK-STAT is also linked to the development of myelofibrosis and other myeloproliferative diseases. JAK antagonists can be used in many areas of medicine. There are many compounds that already show inhibition of Jak-2. We have developed a Field-based 3D QSAR model which showed good correlation values (r2 0.884 and q2 0.67) with an external test set regression pred_r2 0.562. Various properties, such as electronegativity, electro positivity, hydrophobicity, and shape features, were studied under the activity atlas to determine the inhibitory potential of ligands. These were also identified as important structural features responsible for biological activity. We performed virtual screening based on the pharmacophore features of the co-crystal ligand (PDB ID: 3KRR) and a dataset of NPS was selected with a RMSD value less than 0.8. The developed 3D QSAR model was used to screen ligands and calculate the predicted JAK-2 inhibition activity (pKi). The results of the virtual screening were validated using molecular docking and molecular dynamics simulations. SNP1 (SN00154718) and SNP2 (SN00213825) showed binding affinity of -11.16 and -11.08 kcal/mol, respectively, which were very close to the crystal ligand of 3KRR, -11.67 kcal/mol. The RMSD plot of the protein-ligand complex of SNP1 and 3KRR showed stable interactions with an average RMSD of 2.89 Å. Thus, a statistically robust 3D QSAR model could reveal more inhibitors and aid in the design of novel JAK-2 inhibitors.

6.
Iran J Child Neurol ; 17(1): 29-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36721834

RESUMO

Objective: Duchene Muscular dystrophy (DMD) is the common X-linked heterogenous progressive muscular dystrophy characterized by mutations in the DMD gene. The frequency of dystrophin gene mutations is varied in different DMD population. A precise diagnosis can help to reduce the severity of DMD since it aids in planning of targeted medical treatment and required therapies. This study was aimed to investigate the mutation type, their rate and distribution of DMD'S in southern India. Materials & Materials: An observational study was conducted on 250 genetically confirmed DMD patients from March,2019 to March,2021. The distribution pattern and rate of mutations (deletion, duplication, nonsense mutations, minor mutations) were investigated. Results: Mutation spectrum was studied on 250 DMD patients, of which 63% exon deletion pattern were reported. 16% deletions were detected in proximal hot region (exons 3-28). The duplications were found 21% in the proximal hotspot largest region (exon 3-25). 16% of the patients reported single deletion (45 exon), 10.7% reported deletions of exon 44. Point mutations detected in 6%, small mutations were detected in 1.2%, non-sense mutations were detected in 2% of study population respectively. Missense Mutations were detected in 0.8% of study population. Conclusion: This study estimates mutation spectrum of exon deletion pattern (63%) was predominantly identified in distal region; duplication was most frequent in proximal region. Point mutations, Nonsense mutations and small mutations have a least accountability. This study adds a real world evidence for developing research therapies in DMD.

7.
Molecules ; 27(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744881

RESUMO

Considering the importance of benzothiazepine pharmacophore, an attempt was carried out to synthesize novel 1,5-benzothiazepine derivatives using polyethylene glycol-400 (PEG-400)-mediated pathways. Initially, different chalcones were synthesized and then subjected to a cyclization step with benzothiazepine in the presence of bleaching clay and PEG-400. PEG-400-mediated synthesis resulted in a yield of more than 95% in less than an hour of reaction time. Synthesized compounds 2a-2j were investigated for their in vitro cytotoxic activity. Moreover, the same compounds were subjected to systematic in silico screening for the identification of target proteins such as human adenosine kinase, glycogen synthase kinase-3ß, and human mitogen-activated protein kinase 1. The compounds showed promising results in cytotoxicity assays; among the tested compounds, 2c showed the most potent cytotoxic activity in the liver cancer cell line Hep G-2, with an IC50 of 3.29 ± 0.15 µM, whereas the standard drug IC50 was 4.68 ± 0.17 µM. In the prostate cancer cell line DU-145, the compounds displayed IC50 ranges of 15.42 ± 0.16 to 41.34 ± 0.12 µM, while the standard drug had an IC50 of 21.96 ± 0.15 µM. In terms of structural insights, the halogenated phenyl substitution on the second position of benzothiazepine was found to significantly improve the biological activity. This characteristic feature is supported by the binding patterns on the selected target proteins in docking simulations. In this study, 1,5-benzothiazepines have been identified as potential anticancer agents which can be further exploited for the development of more potent derivatives.


Assuntos
Antineoplásicos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazepinas
8.
Pharmaceutics ; 14(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335960

RESUMO

The purpose of the present research work was to design, optimize, and evaluate fluvastatin-loaded solid lipid nanoparticles (FLV-SLNPs) using 32 factorial design for enhancing the bioavailability. Fluvastatin has several disadvantages, including the low solubility and substantial first-pass metabolism resulting in a low (30%) bioavailability and a short elimination half-life. FLV-SLNPs were prepared using the nano-emulsion technique. For the optimization of the FLV-SLNPs, a total of nine formulations were prepared by varying two independent factors at three levels, using full factorial design. In this design, lipid (A) and surfactant (B) concentrations were chosen as independent factors, whereas entrapment efficiency (Y1) and in-vitro drug release (Y2) were selected as the dependent variables. Additionally, the prepared SLNPs were characterized for X-ray diffraction, Fourier transform-infrared spectroscopy, and differential scanning calorimetry. These studies revealed that there were no interactions between the drug and the selected excipients and the selected formulation components are compatible with the drug. Pharmacokinetic studies in rats confirmed significant improvement in AUC and MRT of SLNPs in comparison with the pure drug indicating the enhanced bioavailability of SLNPs. This study provides a proof-of-concept for the fact that SLNPs can be effectively developed via experimental factorial design, which requires relatively minimal experimentation.

9.
J Neurosci Rural Pract ; 13(1): 43-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35110919

RESUMO

Background Duchene muscular dystrophy (DMD) is an X-linked progressive muscle disorder that is characterized by proximal muscle weakness followed by a premature death in young boys. There is a low index of reports on diagnosis ratio and clinical features in Southern India. Objective The present study aimed to conduct an observational survey on preliminary analysis, family history, associated complaints, and diagnosis ratio of DMD in southern regions of India. Materials and Methods A systematic observation and survey were conducted on clinically confirmed DMD patients registered between 2019 and 2021 through the questionnaire. The questionnaire and pattern of study were identified by exploring published and unpublished studies available from electronic databases and critical assessment criteria considered by physicians. Preliminary analysis such as onset criteria, motor difficulties, milestone delay; family history and consanguinity analysis; chief complaints (ambulatory status, lordosis, respiratory, and cardiac outcomes), associated complaints such as enlarged tongue, oral hygiene, behavioral problems; and other similar parameters were studied. An assessment of the diagnosis rate and pattern was performed. Statistical analysis The data were reviewed and interpreted through statistical methods mean ± standard deviation represented as a percentage. Results In total, 400 DMD patients were included and 250 participated in the study. The onset age group was 2 to 5 years in 37% of the population. Milestone delay was seen in 86%; consanguinity marriage of parents was reported in 39%. Frequent falls were reported in 62% in 5 to 8 years old group. Wheelchair status was reported in 65% in 9 to 12 years old. Cervical and lumbar lordoses were seen in 57 and 69%, respectively, in above 13 years old. Respiratory and cardiac complications were 88 and 78% reported in above 13 years old, respectively. Other major associated complaints such as enlarged tongue were reported in 79%. Fifty-one percent underwent genetic diagnosis and 79% of the population underwent serum creatine phosphokinase (CPK) analysis for the confirmation of DMD. Conclusion In this study population of South India, milestone delay was a major observation. Although there was a slight margin, family history shows "no blood relation among parents" in the majority of the study population. Chief complaints were predominantly severe above 13-year age group population. Serum CPK was the first choice for the first investigation, which is followed by a genetic diagnosis.

10.
Braz. J. Pharm. Sci. (Online) ; 58: e20570, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403683

RESUMO

Abstract A stability indicating UPLC method has been developed and validated for the simultaneous determination of fosnetupitant and palonosetron in bulk and in injection dosage form. This combination is used for the prevention of acute and delayed nausea and vomiting associated with initial and repeated courses of highly emetogenic chemotherapy for cancer. The chromatographic analysis was performed on an HSS, RP C18 column (2.1 x 100 mm, 1.8 µm) with an isocratic mobile phase composed of 0.25 M potassium dihydrogen orthophosphate buffer (pH 6.5), pH adjusted with dilute sodium hydroxide:acetonitrile (55:45 v/v), at a flow rate of 0.5 mL/min, and the eluents were monitored at an isosbestic point of 286 nm. The developed method was validated according to the ICH guidelines pertaining to specificity, precision, accuracy, linearity and robustness, and the stability indicating nature of the method was established by forced degradation studies. The retention times of fosnetupitant and palonosetron were observed at 1.390 and 2.404 min, respectively. The developed method proved to be accurate and precise. Linearity was established between 4.70 and 14.10 µg/mL for fosnetupitant and between 0.05 and 0.15 µg/mL for palonosetron. The LOD and LOQ were 0.115 and 0.385 µg/mL, respectively, for fosnetupitant, and 0.005 and 0.016 µg/mL, respectively, for palonosetron. Therefore, the proposed UPLC method was reliable, reproducible, precise and sensitive for the quantification of fosnetupitant and palonosetron.


Assuntos
Estudo de Validação , Palonossetrom/agonistas , Injeções/efeitos adversos , Métodos , Diagnóstico , Formas de Dosagem , Concentração de Íons de Hidrogênio , Neoplasias/prevenção & controle
11.
J Chromatogr Sci ; 59(6): 566-575, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33618351

RESUMO

OBJECTIVE: A selective and sensitive liquid chromatography-tandem mass spectrometer (LC-MS/MS) method has been developed for the quantification of 1,1-dimethyl-3-hydroxy-pyrrolidinium bromide impurity in glycopyrrolate oral solution. MATERIALS AND METHOD: The LC-MS/MS analysis was done on X Bridge HILIC (100 × 4.6 mm, 5 µm) analytical column, and the mobile phase used was10 mM ammonium formate with 0.2% formic acid as mobile phase-A and acetonitrile as mobile phase-B with a gradient programme of 5.0 min. The flow rate used was 1.2 mL/min. Triple quadrupole mass detector coupled to positive electrospray ionization operated in multiple reactions monitoring mode was used for the quantification at m/z 116.10 ± 0.5. RESULTS: Retention time of impurity was found ~3.2 min. The method was validated in terms of specificity, linearity, accuracy, precision, range, limit of detection, limit of quantitation (LOQ) and robustness. Relative standard deviation (RSD) for system suitability was found 1.3%. Calibration plot was linear over the range of 0.050-2.000 µg/mL. Limit of detection and limit of quantification were found 0.017 and 0.051 µg/mL, respectively. The intra- and inter-day precision RSD was 2.3% and the obtained recovery at LOQ to 200% was in between 86.7 and 107.4%. CONCLUSION: The low RSD values and high recoveries of the method confirm the suitability of the method.


Assuntos
Brometos/análise , Contaminação de Medicamentos , Glicopirrolato/química , Antagonistas Muscarínicos/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Limite de Detecção
12.
Turk J Pharm Sci ; 18(6): 718-729, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34978401

RESUMO

OBJECTIVES: Abiraterone acetate is a well-known anticancer drug and a steroidal derivative of progesterone for treatment of patients with hormone-refractory prostate cancer. Chemometrics-assisted reverse phase high performance liquid chromatography (RP-HPLC) development of the drug abiraterone acetate has been employed in this study using an analytical quality by design (AQbD) approach. MATERIALS AND METHODS: Drug separation was performed using a Princeton Merck-Hibar Purospher STAR (C18, 250 mm × 4.6 mm) i.d., 5 µm particle size) with ultraviolet detection at 235 nm. A Box-Behnken statistical experimental design with response surface methodology was executed for method optimization and desired chromatographic separation from its formulation with a few numbers of experimental trials. The impact of three independent variables, namely, composition of the mobile phase, pH, and flow rate, on response retention time and peak area was studied by constructing an arithmetic model from these variables. RESULTS: Optimized experimental conditions for the proposed work include the mobile phase acetonitrile and phosphate buffer (10 mM KH2PO4) (20:80 %v/v). At the concentration range of 2-100 µg/mL, a linear calibration curve was found. Recovery was performed at three concentrations and was foun to be between 98% and 102%. The 3D response surface curves revealed that mobile phase composition and flow rate were the most substantial critical factors affecting desired responses. CONCLUSION: An attempt has been made to develop and validate an economical, precise, robust, stability-indicating AQbD-based RP-HPLC method that can be employed successfully for the routine analysis of abiraterone acetate in quality control labs.

13.
Comb Chem High Throughput Screen ; 24(6): 879-890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32819226

RESUMO

BACKGROUND: COVID-19 is a pandemic respiratory contagious viral (SARS-CoV-2) disease associated with high morbidity and mortality worldwide. Currently, there are no effective preventive or treatment strategies for COVID-19 and it has been declared as a global health emergency by WHO. In silico molecular docking studies can be useful to predict the binding affinity between the phytocompound and the target protein and play a vital role in finding an inhibitor through structure-based drug design. OBJECTIVE: In this aspect, our objective was to screen essential flavonoids against possible protein targets such as SARS-CoV-2 spike glycoprotein receptor binding domain (RBD-S) and host Angiotensin Converting Enzyme-2 protease domain (PD-ACE-2) using in silico molecular docking studies. METHODS: Approximately 49 flavonoids were identified and were evaluated for their drug-likeness based on Lipinski rule, bioactivity scores, antiviral and toxicity profiles using SwissADME, Molinspiration, PASS and GUSAR online tools. The flavonoids that passed Lipinski rule were subjected to in silico analysis through molecular docking on RBD-S and PD-ACE-2 using Molegro Virtual Docker v6.0. RESULTS: The bioactive flavonoids that showed NIL violations and were found in compliance with Lipinski rule were selected for docking studies. In silico analysis reported that biochanin A and silymarin bind significantly at the active sites of RBD-S and PD-ACE-2 with a MolDock score of -78.41and -121.28 kcal/mol respectively. Bioactivity scores, antiviral potential and toxicity profiles were predicted for the top interacting phytocompounds and substantial relevant data was reported. CONCLUSION: The current outcomes created a new paradigm for understanding biochanin A and silymarin bioflavonoids as potent inhibitors of RBD-S and PD-ACE-2 targets respectively. Further work can be extended to confirm their therapeutic potential for COVID-19.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Flavonoides/farmacologia , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/química , Antivirais/toxicidade , Sítios de Ligação , Simulação por Computador , Flavonoides/química , Flavonoides/toxicidade , Simulação de Acoplamento Molecular , Domínios Proteicos , Ratos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Pharmaceutics ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322573

RESUMO

Turmeric, the golden Indian spice, and the edible oil of sesame seeds are the essential ingredients of Indian food created by ancestors and established the belief of the curative effect of food for many generations. Considering the anti-inflammatory effects of turmeric, we formulated a nano-emulsion of turmeric infused in edible sesame oil, with a globule size of 200-250 nm using high-energy microfluidization. The product with a zeta potential of -11.5 mV showed spherical globules when imaged for scanning and transmission electron microscopy. We explored the anti-inflammatory potential of this edible nano-emulsion in lung inflammation. The lungs are the internal organ most vulnerable to infection, injury, and rapid inflammation from the external environment because of their constant exposure to pollutants, pathogenic microorganisms, and viruses. We evaluated the nano-emulsion for efficacy in ovalbumin-induced lung injury in mice with an oral treatment for two weeks. The therapeutic effect of nano-emulsion of the sesame oil-extract of turmeric was evident from biochemical analysis of bronchoalveolar lavage fluid, lung histopathology, and flow cytometric analysis. The developed nano-emulsion significantly reduced the inflammation and damage to the alveolar network in ovalbumin-injured mice. Significant reduction in the levels of neutrophils and inflammatory cytokines like IL-4, IL-6, and IL-13 in bronchoalveolar lavage fluid was observed in the nano-emulsion-treated group. Leukotriene B4 and IgE were also significantly altered in the treated group, thus suggesting the suitability of the formulation for the treatment of allergy and other inflammatory conditions. The nano-emulsification process potentiated the immunoregulatory effect of turmeric, as observed from the elevated levels of the natural anti-inflammatory cytokine, IL-10. The dietary constituents-based nano-emulsion of spice turmeric helped in scavenging the free radicals in the injured lungs, thus modulating the inflammation pathway. This easily scalable formulation technology approach can therefore serve as a potential noninvasive and safe treatment modality for reducing lung inflammation in lung injury cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...